Perturbations preserving conditioned invariant subspaces
نویسندگان
چکیده
منابع مشابه
Perturbations preserving conditioned invariant subspaces ∗
Given the set of matrix pairs M ⊂ Mm,n(C) × Mn(C) keeping a subspace S ⊂ C invariant, we obtain a miniversal deformation of a pair belonging to an open dense subset of M. It generalizes the known results when S is a supplementary subspace of the unobservable one. Keywords-Conditioned invariant subspaces, Miniversal deformation, Stratified manifold, Vertical pairs of matrices.
متن کاملOn the parametrization of conditioned invariant subspaces and observer theory
The present paper is an in depth analysis of the set of conditioned invariant subspaces of a given observable pair (C,A). We do this analysis in two different ways, one based on polynomial models starting with a characterization obtained in [P.A. Fuhrmann, Linear Operators and Systems in Hilbert Space, 1981; IEEE Trans. Automat. Control AC-26 (1981) 284], the other being a state space approach....
متن کاملTowards a compactification of the set of conditioned invariant subspaces
A compactification of the set of conditioned invariant subspaces of fixed dimension for an observable pair (C, A) is proposed. It contains the almost conditioned invariant subspaces of the same dimension. In certain cases the compactification is shown to be smooth and a complete geometric description is given in the case of a single output system.
متن کاملInvariant Subspaces for Certain Finite-rank Perturbations of Diagonal Operators
Suppose that {ek} is an orthonormal basis for a separable, infinite-dimensional Hilbert space H. Let D be a diagonal operator with respect to the orthonormal basis {ek}. That is, D = ∑∞ k=1 λkek⊗ek, where {λk} is a bounded sequence of complex numbers. Let T = D + u1 ⊗ v1 + · · ·+ un ⊗ vn. Improving a result [2] of Foias et al., we show that if the vectors u1, . . . , un and v1, . . . , vn satis...
متن کاملInvariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators
In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in the Applied Sciences
سال: 2011
ISSN: 0170-4214
DOI: 10.1002/mma.1553